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A new class of dynamical structures that generalize electrodynamics is presented. 
In this construction the 1-jets of solutions are represented by a class of k-vector 
fields that extend the notion of a Poisson structure to multivectors of degree 
greater than two. These objects function as tangent vectors to solutions. Although 
the dynamical equations are systems of partial differential equations, the formal- 
ism is very similar to mechanics. 

1. I N T R O D U C T I O N  

In  this paper  I shall describe a class o f  dynamical  structures that  give 
a natural  extension o f  e lect rodynamics  to sections of  a fibered manifold  
pair  (N, S, or) satisfying dim S = n and dim N = (~) + n. The construct ion is 
based on a representat ion o f  the infinitesimal behavior  o f  sections o f  
(N, S, ~r) in terms of  a class o f  "symplec t ic"  ( k +  1)-vector fields on N that  
generalize the concept  o f  a cosymplect ic  structure on a Poisson manifold.  
Higher  degree symplect ic  structures play a role in the study of  multi- 
d imensional  variat ional  problems that is similar to the role played by 
symplect ic  structures in mechanics  in that  they are exterior derivatives of  
pro longat ions  o f  volume forms; see Kijowski and Szczyrba (1975) and 
Goldschmid t  and Sternberg (1973). The present  applicat ion is based on a 
separate proper ty  o f  these objects. It shall be shown that the class o f  
"symplec t ic"  (k + 1)-vector fields funct ion as tangent  vectors to sections o f  
(N, S, ~r). Dynamica l  structures that are formally analogous to mechanics  
are const ructed f rom these objects, and yet the resulting dynamical  equat ions 
are natural  generalizations o f  Maxwell 's  equations.  In fact, when  k = 2, 
Maxwell ' s  equat ions are the dynamical  equat ions for a theory that is formally 
analogous  to Newton ian  mechanics.  
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The remainder of this paper  is divided into four sections. Section 2 
develops the necessary multilinear algebra of  symplectic ( k + l ) - f o r m s .  
Section 3 uses these results to introduce the geometric structures on which 
the construction is based. Section 4 gives the dynamical condition and 
studies the formal properties that establish the relation between this con- 
struction and mechanics. In Section 5, a class of  structures analogous to 
Newtonian mechanics is introduced. The resulting dynamical equations are 
shown to yield Maxwell 's equations when k = 2, and to have traveling wave 
solutions when k = 3. 

2. SYMPLECTIC ( k +  1)-FORMS 

This section develops the linear algebra of  the geometric objects that 
will be used to describe the infinitesimal behavior of  sections of  a flbered 
manifold pair (N, S, ~-). Fix the following notation. I f  V is a vector space 
and W is a subspace of V*, and let ann(W)  be the subspace of V annihilated 
by W. Denote the k-forms on Vby  Ak(V) and the k-vectors on V b y  Ak(V). 
Adopt the convention that if A: V--> V is an endomorphism, then the induced 
map on Ak(V) is also denoted by A: Ak(V) --> Ak(V). An element to ~ Ak(V) 
is nondegenerate if, for u c  V, i(u)to=O implies u=O. I f  S is an order 
set, let ~ k ( S )  be the ordered subsets of S containing k elements. I f  
S={1 . . . .  , n}, then ~ k ( S ) = d E .  To ease the manipulation of multi- 
indices, adopt  the following conventions. I f  {el , .  �9 �9 en} is a basis for V and 
a ~ / 7 , ,  denote ecqA,...,Aeak by e~. I f  a=(al,.. . ,ak), let a t =  
( a l , . . . , a i - l , a i + l , . . . , a k )  and let ( a : j ) = ( a l , . . . , a k , j )  if j ~ a  and 
(a  : j)  = Q otherwise. 

Definition 2.1. A nondegenerate ( k +  1)-form to ~ Ak+I(V) is symplectic 
if there exists a subspace W c  V such that (i) for all u, v ~ IV, i(u ^ w)to = 0, 
(ii) dim W --- dim Ak( V~ W) and dim V~ W >  k. 

Denote the variety of  symplectic ( k + l ) - f o r m s  in Ak+I(V) by 
Symk+l(V). Clearly, in the case where k =  1, Definition 2.1 reduces to the 
definition of a symplectic form on an even-dimensional vector space. In 
this section we shall only consider the case k > 1. The following propositions 
are direct consequences of  Definition 2.1. 

Proposition 2.1. I f  W c  V is a subspace satisfying Definition 2.1, then 
the map i: W->Ak(V/W) given by i(v) = i(v)to is an isomorphism. 

Proposition 2.2. I f  W c  V is a subspace satisfying Definition 2.1, and 
if u, v c W with u ^ v r 0 and i(u A V)to = 0, then span(u, v) c~ W ~ 0. 
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Proof  I f  span(u, v ) n  W = 0 ,  choose v l , . . . ,  V k - 2 ~ V  with vi~ W such 
that u ^ v A Vl ^ " " " A Vk-2 # 0 and span(u, v, Vl, �9 �9 �9 Vk-2) n W = 0. But for 
any w e  W, to(W,U,V, V l , . . . , V k _ 2 ) = O ,  SO k e r ( i ) # 0 .  �9 

Proposition 2.3. I f  W' and W are subspaces satisfying Definition 2.1, 
then W =  W'. 

Proof  By Proposition 2.2, W'c~ W is a subspace of W of at most 
codimension 1. I f  W' # W then there is v ~ W' so that v ~ W. Consider the 
subspace Z c A k ( V / W )  given by Z = 7r(v) ^ Ak-1(V/W),  where ~r is the 
projection onto V~ W. Now, dim Z > 1 and for any z ~ Z and any w ~ W' 
W, i (w) ( z )  = 0. Therefore, ker(i) r 0. �9 

Proposition 2.3 states that if k > 1, a symplectic (k + 1)-form uniquely 
determines the subspace W. For to c Symk+l(V) denote this subspace by 
Wo, This fact is central to the construction of the following sections. Also, 
we shall require a canonical representation of symplectic (k + 1)-forms. The 
following propositions show that all such forms possess a set of  "diagonal"  
coordinates. To see this, we extend the definition of a Lagrangian subspace 
to (k + 1)-forms. 

Definition 2.2. A subspace U c V is a Lagrangian subspaee for to c 
Ak+l(V) if tol u = 0 and if U is maximal in the lattice of  subspaces with this 
property. 

Note that if k > l ,  Lagrangian subspaces need not have equal 
dimension. Also note that if  to c S y m k + l ( V )  and k >  1, then W,o is not a 
Lagrangian subspace. 

Proposition 2.4. For every to ~ Symk+~(V) there exists a Lagrangian 
subspace U transverse to W,o such that V = U |  Wo~. 

Proof  Suppose that U'  is transverse to W,o and tolu = 0, but U ' O  W,o # 
V. Let dim V~ W = n and let dim U ' =  1. Let { u l , . . . ,  ul} be a basis for U'  
and let { u ~ } ~ ,  be a basis of  Ak(U') .  Definition 2.1 implies that the set 
of  linear equations ~ = { h .  ~AI(V)IA~ = i(u2)to} is independent of  W. 
Consquently, if S is the solution space of ~ ,  then 

d i m S n  W., = ( k )  - ( ~ )  

But, 

and so there is U " c  S such that U"c~ Wo~ = 0 and U ' c  U". 

Proposition 2.5. For each to ~ Symk+l(V) there is a basis 

{f~, ei}~.~'~,i~ll ...... 
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of V such that { f ~ } ~ ;  is a basis of W,o and relative to the dual basis 

{f*,  e/*},~es~7,ie{x ...... } 

we have 

o0= E f * ^ e * ^  (1) 
c~eJ~ 

Proof Let U be a Lagrangian subspace transverse to W~ and let 
{ e l , . . . , e , }  be a basis for U. If el* . . . .  , e * e  V* form a dual basis to 
{ e l , . . . ,  e,} and e~l W = O, then for each a e J~,, define f~ e W,o by i(f~)w = 
e *^. The { f ~ } ~  is a basis for Wo, Let { f * } ~  be the dual basis extended 
to V, so that f~*lu = O, and let w' be the right-hand side of (1). To show that 
o) = co', just verify that for u l , . . . ,  uke U and we W,,, co(w, u l , . . . ,  uk)= 
oJ'(w, ul . . . .  , uk). �9 

There is a cell of Lagrangian subspaces transverse to W~. In fact, if U 
is one such subspace, then in terms of the basis of Proposition 2.5 the others 
have graphs relative to the splitting W,o | U that satisfy for a e ~r 

~] ( -  1)JA~;,~j = 0, 
J 

where A~,k are the components of an endomorphism A: U --> Wo~ determined 
by the graph of a Lagrangian subspace transverse to Wo, In the next section 
we shall consider symplectic (k + 1)-forms on manifolds. It is natural to ask 
whether the coordinates of Proposition 2.5 can be extended C%locally. In 
the case of differential forms the answer is yes, if the distribution determined 
by the subspaces W~ is integrable and if w is closed. In the case of 
(k+ l ) -vec to r  fields, the integrability conditions are not understood. For 
the purposes of the present discussion these results are not required; the 
existence of a local frame field that is pointwise given by Proposition 2.5 
will be sufficient. 

3. KINEMATIC CONDITIONS 

If  N is a smooth manifold and (E, N, It) is a vector bundle over N, 
denote the bundle of k-forms on the fibers of E by Ak(E), and denote the 
antisymmetric degree-k tensor product of E by Ak(E). Also denote the 
symmetric degree-k tensor product of E by Sk(E). Denote the space of 
sections of Ak(E) by ~k(E)  and the space of sections of Ak(E) by ~k(E). 
Sections of Ak(TN) are called k-veetorfields. Now transfer in the standard 
manner the linear algebraic structures developed in Section 2 to N. The 
variance of the resulting geometric structures will depend on whether the 
vector space V in Definition 2.1 is a mo~tel for the fibers of TN or T*N. 
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If V is a fiber of TN, apresymplectic k-form satisfies Definition 2.1 pointwise. 
In the case where V is a fiber of T'N, a presymplectic k-vectorfield satisfies 
Definition 2.1 pointwise. Denote the set of  presymplectic k-forms by 
Psymk(N) and the set of  presymplectic k-vector fields by Psymk(N). 

Now we describe how elements of Psymk+I(N) can be used to specify 
sections of a fibered manifold pair (N, S, ~-) satisfying dim N = (~)+ n and 
dim S =  n. Let Ae  Psymk+l(N) and let WA be a subbundle of T*N that 
pointwise satisfies Definition 2.1. Then Y =  ann(WA) is an n-dimensional 
distribution on N. If Y is transverse to the fibers of ~- and integrates to a 
foliation ~, then the leaf of ~ through p c N, ~/p, determines a section s 
of (N, S, rr) given by s = (~r[ ~p)-l.  One can associate A with s in the same 
manner that a vector field is associated with an unparametrized integral 
curve of its flow. We say that A is tangent to s. 

If the dynamics of sections of (N, S, rr) is to be formulated in terms 
of  presymplectic (k+ l ) -vec to r  fields, a condition is required that will 
guarantee that A c Psymk~-~(N) is tangent to at least one section of (N, S, rr). 
Such a condition can be given in terms of the Schouten bracket. The 
Schouten bracket is obtained as an extension of the Lie bracket to contra- 
variant tensors. The extension of the Lie bracket to k-vector fields used 
here differs from the definition given by Nijenhuis (1955). If  A~ ~s 
and Y~e ~g~(TN), denote the Schouten bracket of  A and Z by [A ,Z]6  
~+k-~(TN). The properties of the new extension are discussed in the 
Appendix. The integrability condition that implies the existence of a foli- 
ation aj can be stated in terms of the following bundle maps. Given 
A~Psymk+~(N), for k odd, define, for A, /x, p c  ~(WA),  gA: A3(WA) -> 
A2k-2(TN) by 

ga(A,/x, v) = i(A a/x A ~')[A, A]. 
, /  

For k even, define, for A,/, ,  v c  g~(Wa), ga: S3(WA)~AZk-2(T N) by 

gA(h,/x, p )=  i(A)[i(/z)A, i(~,)A]+i(v)[i(A)A, i(/z)A] 

+ i(/x)[i(u)A, i(A)A]. 

The definition of gA has two parts because the symmetry of the bracket 
depends upon the degree of the forms; see Definition A.1. Also, the fact 
that gA is tensorial when k is even follows from Definition 2.1 and the 
identity for I~, M ~ ~k+~(TN) and f e  o~(N) 

[ f ~ ,  M]  = -N  A (i(df)M)+f[E, M]. 

Definition 3.1. A ~ Psymk+l(N) satisfies the kinematic Maxwell condi- 
tion if gA = 0. 
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It  shall be shown that  under  certain condi t ions the k inemat ic  Maxwel l  
condi t ion guarantees  the existence of  sections tangent  to A. The fol lowing 
example  justifies the choice of  terminology.  

Example 3.1. Let ( Q 1 , . - . ,  Q, ,  P ~ , . - . ,  P , )  be the s tandard  coordinate  
vector  fields on T ' R "  and let 

A = E P i ^  Q~-  E EqP~APj 
i i < j  

where E o E ~ ( R " )  with Eij = - E # .  I f  (dq~ , . . . ,  dq,, dp~ . . . . .  dp,) is the dual  
basis,  then a choice for  WA is 

WA = span({dp~-�89 E Eo dqj},~(1 ...... )) 
J 

A calculat ion shows that  gA = 0 implies V(gE~) = 0. Thus,  Definit ion 3.1 leads 
to the k inemat ic  Maxwel l  equation.  The significance of  the choice A will 
be discussed in Section 5. 

I f  k > 1, the uniqueness  of  WA implies that  any condi t ion that  guaran-  
tees the existence of  a section with tangent  A must  imply  the integrabil i ty 
of  WA. With a d imens ion  condit ion,  this is true for  the k inemat ic  Maxwel l  
condit ion.  

Proposition 3.1. I f  k > 2  and dim S > 2 k ,  then g A = 0  implies that  WA 
is integrable.  

Proof. Assume that  k is odd.  Let 

be a canonical  set of  basis  vector  fields for  A, and  let 

{ p * ,  * ,, 

be the cor responding  dual  basis o f  forms. Then 

ann(WA) = span({ Qj}j~(1 ...... )). 

WA is integrable if, for  any a c M~ and i, j c ( 1 , . . . ,  n),  p~*([Qi, Qj]) = 0. I f  
j ~ a,  choose l, k c a - { i}, or if  i ~ a,  choose I, k ~ a - {j}. I f  { i, j} = a, choose 
k ~ a - { i , j }  and  let l = i. Choose  A, rl ~ M~_2, so that  r 1 n h = ~3 and i, j, k, 
1~ h w r/. Let fl = r 1 u {i,j} and 3/= h w {i, j}. Note  that  

[ A , A ] =  E P ~ , ^ P ~ ^ [ Q ~ , Q ~ ] + ~  
a,/3 

where �9 is a sum of  monomia l s  containing at most  one P~, and so 

, ^, + t ( p v ) [ Q ~ ,  Q~]) i ( p * ^ p ~ ^ p * ) [ A , A ] = 2 ( i ( p * ) [ Q ~  Q~]+i(p~)[Qv Q~] " * ^ 

But, 
^ 1 i+j ^ A [ Q : ,  Q ~ ] = E  ( -  ) [Q.,.Q&]AQ.,AQ~; 

i , j  
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Hence 

i(p* A p~ A * ^ p , ) [A,  A] = p*([Q,, Qj])Q,~ ̂  Qj A Q2 A Q,+A 

where A is independent of Q~AQjA Q]A Qi. Thus, gA=0 implies 
p*([Qi, Qj])=0. A similar argument works when k is even. �9 

A different argument shows that the conclusion is also true for k = 2 
and dim S - 4. It appears that if dim S = 2k - 1, gA = 0 does not imply the 
integrability of  WA. For k = 1, the Darboux Theorem gives the existence 
of  sections with tangent A. 

4. DYNAMICAL CONDITIONS 

This section describes how an extension of Hamiltonian mechanics 
induces a dynamical structure on Psymk(N). Let~E be a k-vector field on 
Ak(TN). If  Ir:Ak(TN)-~N is the bundle map, 1~ determines a map 
h Ak(TN)-~ A k ( T N )  given by l=  ~r,oN. The situation can be summed up 
by the following diagram: 

A*(TA~(TN)) 

2 /  ".< 
l 

Ak(TN) ' Ak(TN) 

N 

When k = 1, then E is a vector field on T'N, and I is a Legendre transforma- 
tion. In general we shall refer to l and the Legendre transformation induced 
by ~. In the following it shall be assumed that l is a diffeomorphism. 

Ak(TN) carries a canonical presymplectic (k + 1)-form 12 c 
Psymk+I(Ak(TN)) which is defined by 12= do-, where or is the canonical 
k-form given by cr (p)= ~r*p for p ~ Ak(TN). Note that Wa is the vertical 
bundle VAk(TN) over Ak(TN). If  s is a section of  (Ak(TN), N, Ir), then 
s induces a projection P, onto the tangent space of its image given by 
P, = s,  o I t , .  Note that ker (P , )=  VAk(TN)[5(N). The dynamical condition 
can be stated in terms of  ~ ,  l, and P, as follows. 

Definition 4.1. A ~ Psymk(N) satisfies the dynamical Maxwell condition 
determined by E if, for p e N, 

i(Pl-l(A)~(l-a(A)(p)) - E(U'(A)(p)))12 = 0 

Note that for any A, 

~r,(Pt-,(A)E(I-I(A)(p)) - E(I-I (A)(p)))  = 0 
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The 1-form 

fA = I-'(A)*i(Pr'(A)X(I-I(A)(P))- X(/- ' (A)(p)))f~ 

on N is called the force on A determined by X. The fA measures the extent 
to which A satisfies Definition 4.1. The following example demonstrates the 
connection between Defintion 4.1 and mechanics. 

Example 4.1. If Z is a vector field on T*N and/3 is the corresponding 
Legendre transformation, then Z determines a spray S = / 3 , Z  on TN. The 
spray S defines a second-order system of ordinary differential equations on 
N. If X is a vector field on N, then the integral curves of X are solutions 
to S if, for q~ N, S(X(q) )=X,X(q) .  This implies that Z(fl- lX(q))= 
(/3-1X),X(q). Since ~r,Z/3-1X=X and since the canonical 2-form is 
nondegenerate, this condition is equivalent to Definition 4.1. 

Example 4.1 suggests that Definition 4.1 should require for k > 1 that 
X(/-I(A)) = / - I (A) ,A .  This is much too strong, since, for q ~ N, / -~(A) ,A(q)  
is generated by subspace UI(A),TNq and X is in general nondegenerate. 
Definition 4.1 is the strongest condition that is satisfied for arbitrary X. 

As in the mechanical example, k-vector fields on Ak(N) that are 
generated by functions play a special role. The X ~ ~g(Ak(TN)) is a Hamil- 
tonian k-vector field if di(E)12 = 0. Again, when k > 1 the situation differs 
from the mechanical example in that there is no one-to-one correspondence 
between exact 1-forms and Hamiltonian k-vector fields. However, if i (X)II = 
dh, the inverse of 1 can still be computed as the vertical derivative of the 
function l c ~ ( a k ( N ) )  given by l(p) = 1-'(p)(p)- h(l-~(p)). 

Of particular interest to the present discussion are k-vector fields that 
satisfy a homogeneity condition. On Ak(TN) there exists a vertical vector 
field X~ defined by i(X~)f~ = cr that serves as a homogeneity operator on 
Ag(TN). Note that equations of this type are not generally solvable; 
however, in this case a unique solution is guaranteed by Proposition 2.1. 
X,~ has the property that L x ~  = f~. The following definition introduces a 
class of homogeneous k-vector fields for which the dynamical Maxwell 
condition has a standard form on N. 

Definition 4.2. A k-vector field Z E ~k(Ak(N))  is projectable if (i) there 
is c ~ R so that Lx~X = cX, and (ii) i(X~)di(X) = O. 

Note that homogeneous Hamiltonian k-vector fields are projectable. 

Proposition 4.1. If Y. is projectable and if c # -1 ,  then for any k-vector 
field A on N 

fA = i(A) dl- ' (A) - (-1)k d(l '(A)(A)) (2) 
l + c  



Dynamical Structures for k-Vector Fields 579 

Proof By Definition 4.2(i), 

Lx i(Y,)l'~ = i( Lx E)fl + i(E)Lx O = (1 + c)i(E)lL 

But, 

Lx i(E)f~ = di( X )i(E)l) + i( X,~) di('~)l'~ 

and so Definition 4.2(ii) implies ( - 1 )  k do-(E)= (1 +c)i(E)fL Thus 

fA = l - ' ( A ) * i ( l - ' ( A ) , A ) f ~ -  l- '(a)*i(X)O 

--1) k 
= i(A)t-l(h)*f~ - (  / -I(A)* do'(A) 

l + c  

and since / - l ( A ) * t r ( E ) = / - I ( A ) ( A )  and / - I ( A ) * ~ =  dl- l(A),  equation (2) 
follows. [] 

Equation (2) is a generalization to vector fields of  arbitrary degree of 
the intrinsic expression for the covariant derivative of  a vector field relative 
to itself with respect to Levi-Civita connection. It leads to an extension of 
Riemannian geometry to k-vector fields that is beyond the scope of the 
present discussion. 

5. N E W T O N I A N  M O D E L S  

To see that for A~ Psymk+l(N) the equations gA=0 and fA = 0  are an 
extension of the free field Maxwell equations, we shall consider a particular 
model of  the previous construction. Let N = Ak(TS) and let g be a pseudo- 
Riemannian metric on S. The Levi-Civita connection on S induces a connec- 
tion V on Ak(TS). The connection V determines a horizontal distribution 
H on Ak(TS) so that TAk(TS)= VAk(TS)@H. Let P: TAk(TS)-->H be 
the bundle map determined by projection onto the horizontal. For horizontal 
vector fields U and V, R(U, V )=(1 -P) [U ,  V] is the (2, 1)-tensor that 
determines the curvature of  V. Extend g to a metric g '  on Ak(TS) so that 
g '  is the orthogonal direct sum of  the lifted metric on H and the fiber metric 
on VAk(S). In turn g '  induces a fiber metric on Ak+1(TN). Define a 
Hamiltonian function on Ak+I(TN) by h(p)= g'(p, p) for p c Ak+l(N). Let 
E be a homogeneous Hamil tonian ( k +  D-vector field on Ak+I(TN) deter- 
mined by h. We seek solutions to the dynamical Maxwell condition that 
are presymplectic and also satisfy the following definition. Let ~ be the 
canonical (k + 1)-form on Ak (TN) .  

Definition 5.1. A~ ~k+I(TN) is Newtonian if (i) or, A = 0  and (ii) for 
all A ~ ~ ( a n n ( H ) ) ,  r  

The following proposit ion helps explain the choice of  terminology. 
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Proposition 5.1. If AePsymk§ is Newtonian, then, for 
A1, �9 �9  Ak+l ~ ~I(TN),  

A(•I, �9 �9 �9 , /~k-i-1) =~~. I([I)((P+A)'A1,..., A, , . . . ,  (P+A)tAk§ (3) 
i 

where A: H ~ VAk(TS) is the bundle map with graph ann(WA). 

Proof. First note that Definition 5.1(i) implies that ann(WA) is trans- 
verse to VAk(TS) and so A is well defined. Now, ann(Wl(a)) = H. F o rp  c N, 
let 

{p*,  * qs }~7d~(1,...,,) 

be a basis of  T*Np dual to a canonical basis for l(F~)(p) such that * 
spans Wl(m. Then p',*=p*-Y~jA~jq* is a basis for WA. If A' is the 
right-hand side of (3), to show that A=A' ,  one must verify that 
A'(p',*, q~^) = A(p'*, q~^). But, A ' (p~ ,  q~^) = l(a)(p*, q~^) and 

i(p',*)(l(ll) - A)(q~ ̂ ) = 0 �9 

Therefore, i fA e Psymk§ is Newtonian, A is completely determined 
once WA is known. This property is the analog of the fact that in Newtonian 
mechanics the velocity completely determines the tangents to world lines. 
A: H--) VAk(TS) can be thought of as the velocity of A. 

To find the local expression for (2) when A is Newtonian, introduce 
an orthonormal frame field { Q ~ , . . . ,  Q'~} on S, and let {q~*, . . . ,  q~,*} be 
the dual basis of 1-forms. For ~ e M~, define p ~  ~k(TS) by p',* = q~^. 
Extend p',* by affine translation to a vector field P~ along VAk(TS), and 
let Qj be the horizontal lift of Qj. Then 

{P~, Q j } ~ j ~ ( ,  ...... ) 

is an orthonormal frame field for Ak(T$) and ~(P~, Q~) = 8~ .  Let 

{p*, * 
q j  } a e M ~ ' j s ( 1  .. . . .  n )  

be the dual fields. If Qj* is the metric dual of Qj, then there is ej = • so 
that q j*= ejQj*. For a c M~ let e, = e , , . , . . . ,  . e ,  k. Now let Ml= sgt(M~) 
and let Mk = M~. Definition 5.1 implies that a Newtonian A~ ~k'§ is 
of the form 

A = Z P,~5 Q2 + Z Z EXl...aj,~P2 ^ Q~ (4) 
at j > l  A ~ j  

I*tE,9~k--j+ 1 

and also 

I-I(A)=EP*^q *^+ E • ff'ltl. . .aj,~P*Aaq*~ ^ 
a j > l  A ~.s~] 

I.~E,~k--j+ I 
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where E)tl.,,)tj~[~ = e~e~EA,...~j,~. In terms of these expressions the dynamical 
Maxwell condition has the following form o n  Newtonian ( k + l ) - v e c t o r  
fields. 

Proposition 5.2. Let A c  ~k+I(TN) be Newtonain, and suppose that, 
for all a ~ M~,, Lp A=O. Then the force on A is given by 

( ] ) k + l . !  , 
f A = ~ ,  - - ,  J~,P.-2f~ 'q* 

/x I 

where 

' = ( - 1 )  V~,E.~.,.~ + Z ( - 1 )  E.~.~,(.~)~R .... 
a, i  K,cr 

r < x  

+ Z 
id, A E ~ j  

"y C ~ k - j +  1 

+ E 
j , A  ~ ,~Ij 

r + s  -- K (-1) E~,~E(~:.K),(~); R~r~s 
K 

'~ E ~ k _ j +  1 r < s  

f 7  ~ r + s  -- K = ( - 1 )  E.~,((~:n~);R(~a).(~:o+ ~ ( -  1) ~+JE~.vV v/~ ~,(vLn 

r < s  TE ~ k _ j +  1 , 

+ ~ g x  -Y ~ [ l " l r + s + j ~ _ ,  K " 
, k - 1  ) .t-~(X:K),((y:l)~r)~R(-/:l)r(-r:l)s, 

~ / E ~ k _ j +  1 F<S 

Proof. Choose {Q~, . . . ,Q '}  so that, at q~S, [Q~,Q~](q)=O and 
r __ VQjQi(q) - 0 for all i and j. Then, for x ~ N with or(x) = q, dqj*.(x) = 0 and 

dp*(x)~,i=dp*(x)~v=O and dp*(x)ij=R~(x); see Dombrowski  (1962). 
Consequently, 

dl -~(A) = ~ _ d/~A,v ̂  P*^ ^ q*^ 
j >  I ,A E ,~ j  

"yC~k-- j+ 1 

- Y, ( - 1 )  j E , + , -  o~ ,,*^ ( - 1 )  E(~:~),(v~)~..~,,~,~, ~ ^ q*^ 
j >  I ,A c . ~ j  K 
) ' E , ~ k _ j +  2 r < s  

The result follows from (4) and (2). 1 

Example 5.1. When k =  1 and S is Lorentzian, Newtonian 2-vector 
fields have the form given in Example 3.1. For k =  1, a~ = Q  for a c M~, 
and so Proposition 5.2 reduce to 

f A = E V j / ~ P * +  2 - ' * E~Rj~ q 
iJ I<j , i  

This can also be written as 

fA =Y. (div P),p~*+�89 E EoR~q * 
i Id, i 
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where/~c  c~2(TS ) is the 2-form on S defined by the vertical part of I-I(A). 
Thus, the vertical component of )CA is the divergence of the field strength, 
and in flat space the horizontal component vanishes. This is analogous to 
the situation in Newtonian mechanics, where in flat space the time com- 
ponent of the force vanishes. 

Example 5.2. For k >  1 the dynamical Maxwell condition leads to 
nonlinear systems of partial differential equations. This example shows that, 
although when k -- 2 Proposition 5.2 gives a nonlinear system, the flat space 
equations fA = 0, gA = 0 still have traveling wave solutions. Since we are 
assuming S to be flat, let S = R". Then N - - R " G  A2(~") and the expression 
for the force is 

fA = Z  (Z (Vt~IE/~-Ot,OL2-- Vt~2/~//- . . . .  ) "31- Z E~cA,jVjF--~,O-KA)P~__~ 
/z a j,~r <A 

+2 ( E E~;,,jVjE~a,t)q* (5) 
1 j,K<A 

Proposition 5.3. Equation (5) admits presymplectic traveling wave 
solutions A ~ Psyma(R" �9 A2(R")) that satisfy gA = 0. 

Proof. Using (3), it is easy to see that 

k l + tSJmA(kl) , i  - -  (6) E (  q )(kl), m = t~ m A (  q), 1 - t~ m A (  ij),k t$imA( kt)d 

E(U)(k~)(,,,,) = ( A(ij),lA(z,),k - A(ij),kA(m,),l) 

+ (A(tk),iA(m,),j - A(tk)dA(m,),i) 

+ ( A ( i j ) , m A ( t k ) , n  - -  A ( i j ) , n A ( t k ) , m )  (7) 

Let eo, el, e: be orthonormal unit vectors such that on U = span(eo, el, e2), 
g has signature ( - , + , + ) .  For x ~ U ,  write x=Yf=ox~e~. For ( i , j )~  
M:({0, 1, 2}) let f~j: R-+ R be C 2. Define, for (i, j)  c ar 1, 2}) and k 
{0, 1, 2}, A(o),k(X)= Dkfj(Xo--X,), and A(~),k(X)=0 otherwise. First note 
that (7) implies that E(ol)(o2)(12)= 0, and so (5) reduces to 

) )CA=( ) (U) y~ ViE(ij)(kl)d--VJE(q)(tk)'i p(kl)+ Y,,,, E(ij)(k~),,,,V,,,E(q)(kt).,, q* 
(ij)<(kl) 

Now (6) implies tha t  Er Er E(0~)02),2 = 
-A(o,),~, E(Ol)(O2),o = -A(o2) ,1 ,  E(ol)(o2).1 = A(o2),o, E(Ol),(o2),2 = -A(o,,o, 
E(02)(12),0 = E(02)(12),1 = 0 ,  E(02)(12),2 = AO2), o -  A(o2),1. Substituting into the 
above expression forfA shows that fA ---- 0 if (f~12) +f~02))' = 0. The kinematic 
condition also follows from these identities. �9 
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Note that the condition fi~2)+f~o2)= 0 and the transverse wave condi- 
t i o n f o ,  = 0 imply that the 2-form to = Y~ f~)q* ^ q* is a solution to Maxwell's 
equations. Although it is not true for arbitrary solutions, this shows that 
traveling wave solutions to the second-order Maxwell condition prolong to 
solutions of the third-order Maxwell condition. 

6. CONCLUDING REMARKS 

I conclude with two remarks. First, to summarize, these arguments 
have shown that in the category of presymplectic (k+ l ) -vec to r  fields, 
Hamilton's equations on Ak+l(TN) can be interpreted as defining a dynami- 
cal structure for sections of  the fibered manifold pair (N, S, ~-). Further, 
sections of  (N, S, ~-) can be viewed as potentials for an extended electrody- 
namics. Note that k = 1 is a degenerate case of this construction, since the 
arguments of Section 2 do not apply to 2-forms. This degeneracy gives rise 
to the gauge symmetry of  electrodynamics. Gauge symmetries are not present 
in theories with k > 1. 

The second remark concerns the significance of Newtonian models 
introduced in Section 5. A Newtonian model can be viewed as an approxima- 
tion technique that  decomposes a motion into forced and free components. 
For instance, in Example 3.1 the electromagnetic field is represented by the 
2-vector field A = ~  Pi ^ Qi - ~ij EuP~ ̂  Pj. Now if h = �89 guP~PJ is the 
mechanical free Hamiltonian on T*R ", then the dynamical vector field on 
T*R n that determines the spray for the Lorentz force law is i(dh)A. 
Newtonian models for k > 1 can be given a similar interpretation. In Martin 
(1987), I describe a non-Newtonian model for electrodynamics. In this 
model the Newtonian condition is replaced a constant charge condition 
that is analogous to the condition in relativistic mechanics that requires 
timelike trajectories to have constant mass. The Newtonian model for k = 2 
describes an "electrodynamics" for this "relativized" version of  classical 
electrodynamics. In this example the fields of  force determine the classical 
electromagnetic currents. The details of the relation between the Newtonian 
k = 2 theory and classical electrodynamics shall appear in a subsequent 
article. 

A P P E N D I X  

This Appendix describes an extension of the Lie bracket on vector 
fields to the algebra of  k-vector fields that is similar to the extension given 
by Nijenhuis (1955), but has a more symmetric derivation property and a 
simpler local form. If  R is a ring and V is an R module, let A*R(V) be the 
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exterior algebra of V over R. So 

~- ~ k ( N ) = A * ( N ) ( ~ I ( N ) )  
k ~ l  

Definition A.I. The Schouten bracket is that extension of the Lie bracket 
on ~ I (N)  to A * ( N ) ~ ( N )  that satisfies the following for Ae  ~P(N),  M e  
~fq(N), N E  ~r (N) :  

(i) [A, M]  e ~P+q-I(N), 
(ii) [A, M]  - (-1)vq§247 M, A], 

(iii) [A, M ^ N]  = [A, M]  A N+(-1)(P+I)qM ^ [A, N].  

In principle, Definition A.1 gives an extension of the Lie bracket to 
A*~1(N).  So it remains to prove the bracket factors to A~(N)~ (N).  This 
can be seen by choosing coordinate vector fields { X ~ , . . . ,  Xn} and verifying 
for all f, g c ~ ( N )  and any i, j that 

[X~, A ' ' "  ^ (fX~,) A ' ' "  A X%, (gX~,) A ' ' "  AXe,)] 

= [X~, A" �9 �9 A ( fX~,)  A" "" A X ~ ,  (gX~,) ^ . . . .  ^ X~.] 

Nijenhuis (1955) uses the condition [A, M]  = (-1)Pq[M, A]  instead of (ii). 
However, Definition A.1 also implies that 

[M ^ N, A] = M A [N, A] + (-1)(P+I)r[M, A] A S 

The bracket given by Definition A.1 satisfies identities similar to Nijenhuis 
(1955). However, there are differences in sign, and so we list the basic 
properties in the following propositions. 

Proposition A.I. If { X ~ , . . . ,  X~} is a basis of coordinate vector fields, 
that is, [X~, Xj] = 0 for all i,j, and if f, g e i f ( N ) ,  then for a e Mp and/3 e d~  

[ fX~,  gX~] = ~  P+J ^^ ^ + ^ ^ ( - 1 )  ( fX~f l )X~j  A X~ ~ ( -1 )J (gX~j f )X~ A X ~  
) J 

The Palais formula for the exterior derivative can be formulated in terms 
of the Schouten bracket. 

Proposition A .2 .  If toe ~+q_I( TN)  and M e  ~P( TN) ,  N e ~q(TN),  
then 

( - 1 )  p dto( M ^ N )  = d( i( M)to )( S )  + ( -1 )  pq+p+q d ( i( N)to )( M )  

+ (o([M, N])  

Proposition A.2 implies the following useful identity. For /z, )t E ~ ( T N )  
and for A e ~P(TN)  and M e ~q(TN) ,  define/x ^ h (A : M)  ~ ~v+q-~(TN) by 

/~ ^ A(A: M) = i(/z)A ^ i(A)M - i(A)A z i ( # ) M  
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For  h ~ ~ I ( T N )  the Schouten  bracket  satisfies the der ivat ion rule 

i(A)[A, M ]  = [ i(A)A, M ]  + ( -1)p+I[A,  i ( A ) M ] + ( - 1 )  p+1 dh(A:  M )  

Final ly,  Def ini t ion A.1 implies  the fol lowing Jacobi  identity. 

Proposition A.3. I f  A ~  ~P( TN) ,  M e  ~q( TN) ,  and  N 6 ~r( TN) ,  then 

(-1)(q+l)(P+r)[A, [M, S]]+(-1)(p+l~(~+q)[N, [A, M ] ]  

+ (-1)('+~)(~+~[M, IN, h i ]  = 0 
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